Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 23 of 23 results
1.

Near-Infrared Optogenetic Module for Conditional Protein Splicing.

red DrBphP MagRed HEK293T HeLa Transgene expression Cell death
J Mol Biol, 8 Nov 2023 DOI: 10.1016/j.jmb.2023.168360 Link to full text
Abstract: Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.
2.

A general approach for engineering RTKs optically controlled with far-red light.

red DrBphP HEK293 mouse in vivo Neuro-2a PC6-3 rat cortical neurons Signaling cascade control Immediate control of second messengers Neuronal activity control
Nat Methods, 9 Jun 2022 DOI: 10.1038/s41592-022-01517-z Link to full text
Abstract: Regulation of receptor tyrosine kinase (RTK) activity is necessary for studying cell signaling pathways in health and disease. We developed a generalized approach for engineering RTKs optically controlled with far-red light. We targeted the bacterial phytochrome DrBphP to the cell surface and allowed its light-induced conformational changes to be transmitted across the plasma membrane via transmembrane helices to intracellular RTK domains. Systematic optimization of these constructs has resulted in optically regulated epidermal growth factor receptor, HER2, TrkA, TrkB, FGFR1, IR1, cKIT and cMet, named eDrRTKs. eDrRTKs induced downstream signaling in mammalian cells in tens of seconds. The ability to activate eDrRTKs with far-red light enabled spectral multiplexing with fluorescent probes operating in a shorter spectral range, allowing for all-optical assays. We validated eDrTrkB performance in mice and found that minimally invasive stimulation in the neocortex with penetrating via skull far-red light-induced neural activity, early immediate gene expression and affected sleep patterns.
3.

Optogenetic technologies in translational cancer research.

blue cyan green near-infrared red Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Biotechnol Adv, 9 Jun 2022 DOI: 10.1016/j.biotechadv.2022.108005 Link to full text
Abstract: Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
4.

Optogenetic approaches in biotechnology and biomaterials.

blue cyan green near-infrared red violet BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes Review
Trends Biotechnol, 11 Jan 2022 DOI: 10.1016/j.tibtech.2021.12.007 Link to full text
Abstract: Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
5.

A guide to the optogenetic regulation of endogenous molecules.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Nat Methods, 26 Aug 2021 DOI: 10.1038/s41592-021-01240-1 Link to full text
Abstract: Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.
6.

Single-component near-infrared optogenetic systems for gene transcription regulation.

red iLight E. coli HeLa mouse in vivo primary mouse hippocampal neurons Transgene expression
Nat Commun, 23 Jun 2021 DOI: 10.1038/s41467-021-24212-7 Link to full text
Abstract: Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing.
7.

Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome.

red Phytochromes Background
Commun Chem, 4 Jan 2021 DOI: 10.1038/s42004-020-00437-3 Link to full text
Abstract: Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
8.

Light control of RTK activity: from technology development to translational research.

blue cyan green red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Sci, 7 Sep 2020 DOI: 10.1039/d0sc03570j Link to full text
Abstract: Inhibition of receptor tyrosine kinases (RTKs) by small molecule inhibitors and monoclonal antibodies is used to treat cancer. Conversely, activation of RTKs with their ligands, including growth factors and insulin, is used to treat diabetes and neurodegeneration. However, conventional therapies that rely on injection of RTK inhibitors or activators do not provide spatiotemporal control over RTK signaling, which results in diminished efficiency and side effects. Recently, a number of optogenetic and optochemical approaches have been developed that allow RTK inhibition or activation in cells and in vivo with light. Light irradiation can control RTK signaling non-invasively, in a dosed manner, with high spatio-temporal precision, and without the side effects of conventional treatments. Here we provide an update on the current state of the art of optogenetic and optochemical RTK technologies and the prospects of their use in translational studies and therapy.
9.

Bacterial Phytochrome as a Scaffold for Engineering of Receptor Tyrosine Kinases Controlled with Near-Infrared Light.

red DrBphP HeLa PC6-3 Signaling cascade control
J Mol Biol, 14 Apr 2020 DOI: 10.1016/j.jmb.2020.04.005 Link to full text
Abstract: Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.
10.

Optogenetic regulation of endogenous proteins.

blue near-infrared AsLOV2 BphP1/Q-PAS1 HeLa U-2 OS Signaling cascade control Control of cytoskeleton / cell motility / cell shape Multichromatic
Nat Commun, 30 Jan 2020 DOI: 10.1038/s41467-020-14460-4 Link to full text
Abstract: Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.
11.

Focusing light inside live tissue using reversibly switchable bacterial phytochrome as a genetically encoded photochromic guide star.

red DrBphP mouse in vivo primary mouse hippocampal neurons U-87 MG Transgene expression
Sci Adv, 11 Dec 2019 DOI: 10.1126/sciadv.aay1211 Link to full text
Abstract: Focusing light deep by engineering wavefronts toward guide stars inside scattering media has potential biomedical applications in imaging, manipulation, stimulation, and therapy. However, the lack of endogenous guide stars in biological tissue hinders its translations to in vivo applications. Here, we use a reversibly switchable bacterial phytochrome protein as a genetically encoded photochromic guide star (GePGS) in living tissue to tag photons at targeted locations, achieving light focusing inside the tissue by wavefront shaping. As bacterial phytochrome-based GePGS absorbs light differently upon far-red and near-infrared illumination, a large dynamic absorption contrast can be created to tag photons inside tissue. By modulating the GePGS at a distinctive frequency, we suppressed the competition between GePGS and tissue motions and formed tight foci inside mouse tumors in vivo and acute mouse brain tissue, thus improving light delivery efficiency and specificity. Spectral multiplexing of GePGS proteins with different colors is an attractive possibility.
12.

Neurotrophin receptor tyrosine kinases regulated with near-infrared light.

blue red DrBphP TULIP CHO HeLa mouse in vivo NIH/3T3 PC6-3 SH-SY5Y U-87 MG Signaling cascade control Multichromatic
Nat Commun, 8 Mar 2019 DOI: 10.1038/s41467-019-08988-3 Link to full text
Abstract: Optical control over the activity of receptor tyrosine kinases (RTKs) provides an efficient way to reversibly and non-invasively map their functions. We combined catalytic domains of Trk (tropomyosin receptor kinase) family of RTKs, naturally activated by neurotrophins, with photosensory core module of DrBphP bacterial phytochrome to develop opto-kinases, termed Dr-TrkA and Dr-TrkB, reversibly switchable on and off with near-infrared and far-red light. We validated Dr-Trk ability to reversibly light-control several RTK pathways, calcium level, and demonstrated that their activation triggers canonical Trk signaling. Dr-TrkA induced apoptosis in neuroblastoma and glioblastoma, but not in other cell types. Absence of spectral crosstalk between Dr-Trks and blue-light-activatable LOV-domain-based translocation system enabled intracellular targeting of Dr-TrkA independently of its activation, additionally modulating Trk signaling. Dr-Trks have several superior characteristics that make them the opto-kinases of choice for regulation of RTK signaling: high activation range, fast and reversible photoswitching, and multiplexing with visible-light-controllable optogenetic tools.
13.

Smallest near-infrared fluorescent protein evolved from cyanobacteriochrome as versatile tag for spectral multiplexing.

blue AsLOV2 HeLa
Nat Commun, 17 Jan 2019 DOI: 10.1038/s41467-018-08050-8 Link to full text
Abstract: From a single domain of cyanobacteriochrome (CBCR) we developed a near-infrared (NIR) fluorescent protein (FP), termed miRFP670nano, with excitation at 645 nm and emission at 670 nm. This is the first CBCR-derived NIR FP evolved to efficiently bind endogenous biliverdin chromophore and brightly fluoresce in mammalian cells. miRFP670nano is a monomer with molecular weight of 17 kDa that is 2-fold smaller than bacterial phytochrome (BphP)-based NIR FPs and 1.6-fold smaller than GFP-like FPs. Crystal structure of the CBCR-based NIR FP with biliverdin reveals a molecular basis of its spectral and biochemical properties. Unlike BphP-derived NIR FPs, miRFP670nano is highly stable to denaturation and degradation and can be used as an internal protein tag. miRFP670nano is an effective FRET donor for red-shifted NIR FPs, enabling engineering NIR FRET biosensors spectrally compatible with GFP-like FPs and blue-green optogenetic tools. miRFP670nano unlocks a new source of diverse CBCR templates for NIR FPs.
14.

Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales.

near-infrared Phytochromes Review
Trends Biotechnol, 21 Jul 2018 DOI: 10.1016/j.tibtech.2018.06.011 Link to full text
Abstract: Since mammalian tissue is relatively transparent to near-infrared (NIR) light, NIR fluorescent proteins (FPs) engineered from bacterial phytochromes have become widely used probes for non-invasive in vivo imaging. Recently, these genetically encoded NIR probes have been substantially improved, enabling imaging experiments that were not possible previously. Here, we discuss the use of monomeric NIR FPs and NIR biosensors for multiplexed imaging with common visible GFP-based probes and blue light-activatable optogenetic tools. These NIR probes are suitable for visualization of functional activities from molecular to organismal levels. In combination with advanced imaging techniques, such as two-photon microscopy with adaptive optics, photoacoustic tomography and its recent modification reversibly switchable photoacoustic computed tomography, NIR probes allow subcellular resolution at millimeter depths.
15.

Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing.

blue near-infrared AsLOV2 BphP1/PpsR2 BphP1/Q-PAS1 VVD HeLa mouse in vivo Multichromatic
Nat Protoc, 26 Apr 2018 DOI: 10.1038/nprot.2018.022 Link to full text
Abstract: Near-infrared (NIR, 740-780 nm) optogenetic systems are well-suited to spectral multiplexing with blue-light-controlled tools. Here, we present two protocols, one for regulation of gene transcription and another for control of protein localization, that use a NIR-responsive bacterial phytochrome BphP1-QPAS1 optogenetic pair. In the first protocol, cells are transfected with the optogenetic constructs for independently controlling gene transcription by NIR (BphP1-QPAS1) and blue (LightOn) light. The NIR and blue-light-controlled gene transcription systems show minimal spectral crosstalk and induce a 35- to 40-fold increase in reporter gene expression. In the second protocol, the BphP1-QPAS1 pair is combined with a light-oxygen-voltage-sensing (LOV) domain-based construct into a single optogenetic tool, termed iRIS. This dual-light-controllable protein localization tool allows tridirectional protein translocation among the cytoplasm, nucleus and plasma membrane. Both procedures can be performed within 3-5 d. Use of NIR light-controlled optogenetic systems should advance basic and biomedical research.
16.

Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.

blue LOVTRAP 3T3MEF
Nat Chem Biol, 23 Apr 2018 DOI: 10.1038/s41589-018-0044-1 Link to full text
Abstract: Direct visualization and light control of several cellular processes is a challenge, owing to the spectral overlap of available genetically encoded probes. Here we report the most red-shifted monomeric near-infrared (NIR) fluorescent protein, miRFP720, and the fully NIR Förster resonance energy transfer (FRET) pair miRFP670-miRFP720, which together enabled design of biosensors compatible with CFP-YFP imaging and blue-green optogenetic tools. We developed a NIR biosensor for Rac1 GTPase and demonstrated its use in multiplexed imaging and light control of Rho GTPase signaling pathways. Specifically, we combined the Rac1 biosensor with CFP-YFP FRET biosensors for RhoA and for Rac1-GDI binding, and concurrently used the LOV-TRAP tool for upstream Rac1 activation. We directly observed and quantified antagonism between RhoA and Rac1 dependent on the RhoA-downstream effector ROCK; showed that Rac1 activity and GDI binding closely depend on the spatiotemporal coordination between these two molecules; and simultaneously observed Rac1 activity during optogenetic manipulation of Rac1.
17.

Optogenetically controlled protein kinases for regulation of cellular signaling.

blue cyan green near-infrared red Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Chem Soc Rev, 2 Mar 2018 DOI: 10.1039/c7cs00404d Link to full text
Abstract: Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
18.

Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells.

blue near-infrared AsLOV2 BphP1/Q-PAS1 Cos-7 HEK293 HeLa Neuro-2a rat cortical neurons SH-SY5Y U-2 OS Multichromatic
Chembiochem, 21 Feb 2018 DOI: 10.1002/cbic.201700642 Link to full text
Abstract: Near-infrared (NIR) light-inducible binding of bacterial phytochrome BphP1 to its engineered partner QPAS1 is used for optical protein regulation in mammalian cells. However, there are no data on the application of the BphP1-QPAS1 pair in cells derived from various mammalian tissues. Here, we tested functionality of two BphP1-QPAS1-based optogenetic tools, such as an NIR and blue light-sensing system for control of protein localization (iRIS) and an NIR light-sensing system for transcription activation (TA), in several cell types including cortical neurons. We found that the performance of these optogenetic tools often rely on physiological properties of a specific cell type, such as nuclear transport, which may limit applicability of blue light-sensitive component of iRIS. In contrast, the NIR-light-sensing part of iRIS performed well in all tested cell types. The TA system showed the best performance in HeLa, U-2 OS and HEK-293 cells. Small size of the QPAS1 component allows designing AAV viral particles, which were applied to deliver the TA system to neurons.
19.

Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes.

near-infrared red Phytochromes Review
Chem Rev, 12 Apr 2017 DOI: 10.1021/acs.chemrev.6b00700 Link to full text
Abstract: Phytochrome photoreceptors absorb far-red and near-infrared (NIR) light and regulate light responses in plants, fungi, and bacteria. Their multidomain structure and autocatalytic incorporation of linear tetrapyrrole chromophores make phytochromes attractive molecular templates for the development of light-sensing probes. A subclass of bacterial phytochromes (BphPs) utilizes heme-derived biliverdin tetrapyrrole, which is ubiquitous in mammalian tissues, as a chromophore. Because biliverdin possesses the largest electron-conjugated chromophore system among linear tetrapyrroles, BphPs exhibit the most NIR-shifted spectra that reside within the NIR tissue transparency window. Here we analyze phytochrome structure and photochemistry to describe the molecular mechanisms by which they function. We then present strategies to engineer BphP-based NIR fluorescent proteins and review their properties and applications in modern imaging technologies. We next summarize designs of reporters and biosensors and describe their use in the detection of protein-protein interactions, proteolytic activities, and posttranslational modifications. Finally, we provide an overview of optogenetic tools developed from phytochromes and describe their use in light-controlled cell signaling, gene expression, and protein localization. Our review provides guidelines for the selection of NIR probes and tools for noninvasive imaging, sensing, and light-manipulation applications, specifically focusing on probes developed for use in mammalian cells and in vivo.
20.

Near-infrared optogenetic pair for protein regulation and spectral multiplexing.

blue near-infrared AsLOV2 BphP1/PpsR2 BphP1/Q-PAS1 VVD HeLa in vitro Multichromatic
Nat Chem Biol, 27 Mar 2017 DOI: 10.1038/nchembio.2343 Link to full text
Abstract: Multifunctional optogenetic systems are in high demand for use in basic and biomedical research. Near-infrared-light-inducible binding of bacterial phytochrome BphP1 to its natural PpsR2 partner is beneficial for simultaneous use with blue-light-activatable tools. However, applications of the BphP1-PpsR2 pair are limited by the large size, multidomain structure and oligomeric behavior of PpsR2. Here, we engineered a single-domain BphP1 binding partner, Q-PAS1, which is three-fold smaller and lacks oligomerization. We exploited a helix-PAS fold of Q-PAS1 to develop several near-infrared-light-controllable transcription regulation systems, enabling either 40-fold activation or inhibition. The light-induced BphP1-Q-PAS1 interaction allowed modification of the chromatin epigenetic state. Multiplexing the BphP1-Q-PAS1 pair with a blue-light-activatable LOV-domain-based system demonstrated their negligible spectral crosstalk. By integrating the Q-PAS1 and LOV domains in a single optogenetic tool, we achieved tridirectional protein targeting, independently controlled by near-infrared and blue light, thus demonstrating the superiority of Q-PAS1 for spectral multiplexing and engineering of multicomponent systems.
21.

A bacterial phytochrome-based optogenetic system controllable with near-infrared light.

blue near-infrared red BphP1/PpsR2 PhyB/PIF6 VVD HeLa in vitro mouse in vivo Control of cytoskeleton / cell motility / cell shape
Nat Methods, 9 May 2016 DOI: 10.1038/nmeth.3864 Link to full text
Abstract: Light-mediated control of protein-protein interactions to regulate cellular pathways is an important application of optogenetics. Here, we report an optogenetic system based on the reversible light-induced binding between the bacterial phytochrome BphP1 and its natural partner PpsR2 from Rhodopseudomonas palustris bacteria. We extensively characterized the BphP1-PpsR2 interaction both in vitro and in mammalian cells and then used this interaction to translocate target proteins to specific cellular compartments, such as the plasma membrane and the nucleus. We showed light-inducible control of cell morphology that resulted in a substantial increase of the cell area. We demonstrated light-dependent gene expression with 40-fold contrast in cultured cells, 32-fold in subcutaneous mouse tissue, and 5.7-fold in deep tissues in mice. Characteristics of the BphP1-PpsR2 optogenetic system include its sensitivity to 740- to 780-nm near-infrared light, its ability to utilize an endogenous biliverdin chromophore in eukaryotes (including mammals), and its spectral compatibility with blue-light-driven optogenetic systems.
22.

Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Annu Rev Biochem, 20 Feb 2015 DOI: 10.1146/annurev-biochem-060614-034411 Link to full text
Abstract: Genetically encoded optical tools have revolutionized modern biology by allowing detection and control of biological processes with exceptional spatiotemporal precision and sensitivity. Natural photoreceptors provide researchers with a vast source of molecular templates for engineering of fluorescent proteins, biosensors, and optogenetic tools. Here, we give a brief overview of natural photoreceptors and their mechanisms of action. We then discuss fluorescent proteins and biosensors developed from light-oxygen-voltage-sensing (LOV) domains and phytochromes, as well as their properties and applications. These fluorescent tools possess unique characteristics not achievable with green fluorescent protein-like probes, including near-infrared fluorescence, independence of oxygen, small size, and photosensitizer activity. We next provide an overview of available optogenetic tools of various origins, such as LOV and BLUF (blue-light-utilizing flavin adenine dinucleotide) domains, cryptochromes, and phytochromes, enabling control of versatile cellular processes. We analyze the principles of their function and practical requirements for use. We focus mainly on optical tools with demonstrated use beyond bacteria, with a specific emphasis on their applications in mammalian cells.
23.

Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals.

blue near-infrared red Cryptochromes LOV domains Phytochromes Review
Chem Soc Rev, 29 Jan 2013 DOI: 10.1039/c3cs35458j Link to full text
Abstract: Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
Submit a new publication to our database